
# Digital Power Electronics and Applications



## Digital Power Electronics and Applications

# This page intentionally left blank

## Digital Power Electronics and Applications

Fang Lin Luo Hong Ye Muhammad Rashid



This book is printed on acid-free paper

Copyright © 2005, Elsevier (USA), All rights reserved

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means electronic, mechanical, photocopying, recording or otherwise, without the prior written permission of the publisher

Permissions may be sought directly from Elsevier's Science & Technology Rights Department in Oxford, UK: phone: (+44) 1865 843830, fax: (+44) 1865 853333, e-mail: permissions@elsevier.co.uk. You may also complete your request on-line via the Elsevier homepage (http://elsevier.com), by selecting "Customer Support" and then "Obtaining Permissions."

Elsevier Academic Press 525 B Street, Suite 1900, San Diego, California 92101-4495, USA http://www.elsevier.com

Elsevier Academic Press 84 Theobald's Road, London WC1X 8RR, UK http://www.elsevier.com

Library of Congress Control Number: 2005929576

### British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library.

ISBN: 0-1208-8757-6

Typeset by Charon Tec Pvt. Ltd, Chennai, India www.charontec.com Printed and bound in United States 05 06 07 08 9 8 7 6 5 4 3 2 1

### Working together to grow libraries in developing countries

www.elsevier.com | www.bookaid.org | www.sabre.org

ELSEVIER

BOOK AID

Sabre Foundation

### **Contents**

| Pre | face                                             |                                                                  | ix  |  |  |
|-----|--------------------------------------------------|------------------------------------------------------------------|-----|--|--|
| Au  | tobiog                                           | raphy                                                            | X   |  |  |
| 1.  | Introduction                                     |                                                                  |     |  |  |
|     | 1.1                                              | Historical review                                                | 1   |  |  |
|     | 1.2                                              | Traditional parameters                                           | 7   |  |  |
|     | 1.3                                              | Multiple-quadrant operations and choppers                        | 16  |  |  |
|     | 1.4                                              | Digital power electronics: pump circuits and conversion          |     |  |  |
|     |                                                  | technology                                                       | 22  |  |  |
|     | 1.5                                              | Shortage of analog power electronics and conversion technology   | 31  |  |  |
|     | 1.6                                              | Power semiconductor devices applied in digital power electronics | 32  |  |  |
| 2.  | Energy Factor (EF) and Sub-sequential Parameters |                                                                  |     |  |  |
|     | 2.1                                              | Introduction                                                     | 34  |  |  |
|     | 2.2                                              | Pumping energy $(PE)$                                            | 35  |  |  |
|     | 2.3                                              | Stored energy $(SE)$                                             | 36  |  |  |
|     | 2.4                                              | Energy factor $(EF)$                                             | 40  |  |  |
|     | 2.5                                              | Variation energy factor $(EF_{V})$                               | 41  |  |  |
|     | 2.6                                              | Time constant, $\tau$ , and damping time constant, $\tau_d$      | 41  |  |  |
|     | 2.7                                              | Examples of applications                                         | 43  |  |  |
|     | 2.8                                              | Small signal analysis                                            | 65  |  |  |
| 3.  | Basic                                            | Mathematics of Digital Control Systems                           |     |  |  |
|     | 3.1                                              | Introduction                                                     | 85  |  |  |
|     | 3.2                                              | Digital Signals and Coding                                       | 91  |  |  |
|     | 3.3                                              | Shannon's sampling theorem                                       | 94  |  |  |
|     | 3.4                                              | Sample-and-hold devices                                          | 95  |  |  |
|     | 3.5                                              | Analog-to-digital conversion                                     | 99  |  |  |
|     | 3.6                                              | Digital-to-analog conversion                                     | 101 |  |  |
|     | 3.7                                              | Energy quantization                                              | 104 |  |  |
|     | 3.8                                              | Introduction to reconstruction of sampled signals                | 106 |  |  |
|     | 3.9                                              | Data conversion: the zero-order hold                             | 107 |  |  |
|     | 3.10                                             | The first-order hold                                             | 110 |  |  |
|     |                                                  | The second-order hold                                            | 112 |  |  |
|     | 3.12                                             | The Laplace transform (the s-domain)                             | 118 |  |  |
|     | 2 12                                             | The z transform (the z domain)                                   | 110 |  |  |

vi Contents

| 4. | Mat                                   | nematical Modeling of Digital Power Electronics                  |     |  |
|----|---------------------------------------|------------------------------------------------------------------|-----|--|
|    | 4.1                                   | Introduction                                                     | 123 |  |
|    | 4.2                                   | A zero-order hold (ZOH) for AC/DC controlled rectifiers          | 125 |  |
|    | 4.3                                   | A first-order transfer function for DC/AC pulse-width-modulation |     |  |
|    |                                       | inverters                                                        | 128 |  |
|    | 4.4                                   | A second-order transfer function for DC/DC converters            | 132 |  |
|    | 4.5                                   | A first-order transfer function for AC/AC (AC/DC/AC) converters  | 136 |  |
| 5. | Digitally Controlled AC/DC Rectifiers |                                                                  |     |  |
|    | 5.1                                   | Introduction                                                     | 142 |  |
|    | 5.2                                   | Mathematical modeling for AC/DC rectifiers                       | 151 |  |
|    | 5.3                                   | Single-phase half-wave controlled AC/DC rectifier                | 153 |  |
|    | 5.4                                   | Single-phase full-wave AC/DC rectifier                           | 154 |  |
|    | 5.5                                   | Three-phase half-wave controlled AC/DC rectifier                 | 155 |  |
|    | 5.6                                   | Three-phase full-wave controlled AC/DC rectifier                 | 155 |  |
|    | 5.7                                   | Three-phase double-anti-star with interphase-transformer         |     |  |
|    |                                       | controlled AC/DC rectifier                                       | 156 |  |
|    | 5.8                                   | Six-phase half-wave controlled AC/DC rectifier                   | 158 |  |
|    | 5.9                                   | Six-phase full-wave controlled AC/DC rectifier                   | 159 |  |
| 6. | Digitally Controlled DC/AC Inverters  |                                                                  |     |  |
|    | 6.1                                   | Introduction                                                     | 162 |  |
|    | 6.2                                   | Mathematical modeling for DC/AC PWM inverters                    | 172 |  |
|    | 6.3                                   | Single-phase half-wave VSI                                       | 174 |  |
|    | 6.4                                   | Single-phase full-bridge PWM VSI                                 | 175 |  |
|    | 6.5                                   | Three-phase full-bridge PWM VSI                                  | 175 |  |
|    | 6.6                                   | Three-phase full-bridge PWM CSI                                  | 176 |  |
|    | 6.7                                   | Multistage PWM inverter                                          | 176 |  |
|    | 6.8                                   | Multilevel PWM inverter                                          | 176 |  |
| 7. | Digitally Controlled DC/DC Converters |                                                                  |     |  |
|    | 7.1                                   | Introduction                                                     | 178 |  |
|    | 7.2                                   | Mathematical Modeling for power DC/DC converters                 | 202 |  |
|    | 7.3                                   | Fundamental DC/DC converter                                      | 205 |  |
|    | 7.4                                   | Developed DC/DC converters                                       | 208 |  |
|    | 7.5                                   | Soft-switching converters                                        | 209 |  |
|    | 7.6                                   | Multi-element resonant power converters                          | 213 |  |
| 8. | Digitally Controlled AC/AC Converters |                                                                  |     |  |
|    | 8.1                                   | Introduction                                                     | 221 |  |
|    | 8.2                                   | Traditional modeling for AC/AC (AC/DC/AC) converters             | 244 |  |
|    | 8.3                                   | Single-phase AC/AC converter                                     | 245 |  |
|    | 8.4                                   | Three-phase AC/AC voltage controllers                            | 245 |  |
|    | 8.5                                   | SISO cycloconverters                                             | 246 |  |

Contents vii

| 8     | .6 TISO cycloconverters                                 | 246 |  |  |
|-------|---------------------------------------------------------|-----|--|--|
| 8     | .7 TITO cycloconverters                                 | 246 |  |  |
| 8     | .8 AC/DC/AC PWM converters                              | 246 |  |  |
| 8     | .9 Matrix converters                                    | 247 |  |  |
| 9. (  | Open-loop Control for Digital Power Electronics         |     |  |  |
| 9     | .1 Introduction                                         | 249 |  |  |
| 9     | .2 Stability analysis                                   | 256 |  |  |
| 9     | .3 Unit-step function responses                         | 269 |  |  |
| 9     | .4 Impulse responses                                    | 280 |  |  |
| 9     | .5 Summary                                              | 281 |  |  |
| 10.   | Closed-Loop Control for Digital Power Electronics       |     |  |  |
| 1     | 0.1 Introduction                                        | 283 |  |  |
| 1     | 0.2 PI control for AC/DC rectifiers                     | 288 |  |  |
| 1     | 0.3 PI control for DC/AC inverters and AC/AC (AC/DC/AC) |     |  |  |
|       | converters                                              | 298 |  |  |
| 1     | 0.4 PID control for DC/DC converters                    | 305 |  |  |
| 11. E | Energy Factor Application in AC and DC Motor Drives     |     |  |  |
| 1     | 1.1 Introduction                                        | 314 |  |  |
| 1     | 1.2 Energy storage in motors                            | 315 |  |  |
| 1     | 1.3 A DC/AC voltage source                              | 317 |  |  |
| 1     | 1.4 An AC/DC current source                             | 333 |  |  |
| 1     | 1.5 AC motor drives                                     | 338 |  |  |
| 1     | 1.6 DC motor drives                                     | 342 |  |  |
| 12. A | Applications in Other Branches of Power Electronics     |     |  |  |
| 1     | 2.1 Introduction                                        | 348 |  |  |
| 1     | 2.2 Power systems analysis                              | 349 |  |  |
| 1     | 2.3 Power factor correction                             | 349 |  |  |
| 1     | 2.4 Static compensation (STATCOM)                       | 363 |  |  |
| Index |                                                         | 401 |  |  |

# This page intentionally left blank

### Preface

The purpose of this book is to provide a theory of Digital Power Electronics and its applications. It is well organized in 400 pages and over 300 diagrams. Traditionally, Power Electronics is analyzed by the analog control theory. For over a century, people have enjoyed analog control in Power Electronics, and good results in the analog control and its applications in Power Electronics mislead people into an incorrect conclusion that Power Electronics **must** be in analog control scheme. The mature control results allowed people to think that Power Electronics is a sunset knowledge. We would like to change these incorrect conclusions, and confer new life onto the traditional Power Electronics. In this book the authors initially introduce the digital control theory applied to Power Electronics, which is completely different from the traditional control scheme.

Power Electronics supplies electrical energy from its source to its users. It is of vital importance to all of industry as well as the general public – just as the air that we breathe and water that we drink are taken for granted, until they are no longer available, so it is with Power Electronics. Therefore, we have to carefully investigate Power Electronics. Energy conversion technique is the main focus of Power Electronics. DC and AC motor drive systems convert the electrical energy to mechanical energy and vice versa. The corresponding equipment that drives DC and AC motors can be divided into four groups:

- AC/DC rectifiers:
- DC/AC inverters:
- DC/DC converters:
- AC/AC (AC/DC/AC) converters.